PREDICTION OF CORPORATE CUSTOMER CHURN IN TELECOMMUNICATION SECTOR
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LEARNING MODELS
Artificial Neural Network (ANN) Support Vector Machine (SVM) Naive Bayes (NB) Random Forest (RF)
-The objective of the neural network is to -Alearning model that is based on structural -Naive Bayes methods are a set of supervised -Itis a model of multiple decision trees created
transform the inputs into meaningful out- risk minimization, controlled by associated learning algorithms based on applying using maore than one decision tree. It has been
puts. learning algorithms that analyze data and Bayes'theorem with the “naive” assumption improved by adding randomness feature to
-Eachinput value is multiplied by the carre- define patterns. of independence between every pair of fea- bagging method. (Breiman 2001)
sponding weighting layers, then summed -A support vecter machine attempts to find the tures.
and a scalar parameter called bias is added. line that "best" separates two classes of points. The result of Naive Bayes modeling tech- -This model breaks each node into branches
There are three types of transfer functions By "best", it means the line that results in the nique became acceptable when the high using the best among randomly selected fea-
used commonly in literature such as sigmoid, largest margin between the two classes. The dimensional data was transformed into low tures in each node, instead of dividing each
rectifier®, hyperbolic tangent and linear. jpoints that lie on this margin are the support dimension (Huang, Kechadi, & Buckley 2012). node by using the best parameter among all
* transfer function which i used i our model vectors. features.

EVALUATION RESULTS
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